

-0.1V to +28V Input Range, Micropower, Uni-/Bidirectional, Current-Sense Amplifiers

www.datasheet4u.com

General Description

The MAX9928/MAX9929 low-cost, uni-/bidirectional, high-side, current-sense amplifiers are ideal for monitoring battery charge and discharge currents in notebooks, cell phones, and other portable equipment. These devices feature a wide -0.1V to +28V input common-mode voltage range, low 20µA supply current with Vos less than 0.4mV, and a gain accuracy better than 1.0%. The input common-mode range is independent of the supply voltage, ensuring that the current-sense information remains accurate even when the measurement rail is shorted to ground.

The MAX9928F/MAX9928T feature a current output with transconductance ratios of 5µA/mV and 2µA/mV, respectively. An external resistor converts the output current to a voltage, allowing adjustable gain so that the input sense voltage can be matched to the maximum ADC input swing. The MAX9929F/MAX9929T have a voltage output and integrate a 10k Ω output resistor for fixed voltage gains of 50V/V and 20V/V, respectively.

A digital SIGN output indicates direction of current flow, so the user can utilize the full ADC input range for measuring both charging and discharging currents.

The MAX9928/MAX9929 are fully specified over the -40°C to +125°C automotive temperature range, and available in 6-bump UCSPTM (1mm x 1.5mm) and 8-pin μ MAX[®] packages. The UCSP package is bump-to-bump compatible with the MAX4372_EBT.

UCSP is a trademark and μMAX is a registered trademark of Maxim Integrated Products, Inc.

Pin Configurations and Typical Operating Circuit appear at end of data sheet.

_Features

- Wide -0.1V to +28V Common-Mode Range, Independent of Supply Voltage
- ♦ 2.5V to 5.5V Operating Supply Voltage
- 20µA Quiescent Supply Current
- ♦ 0.4mV (max) Input Offset Voltage
- ♦ Gain Accuracy Better than 1% (max)
- SIGN Output Indicates Current Polarity
- Two IOUT Transconductance Versions Available 2µA/mV (MAX9928T) 5µA/mV (MAX9928F)
- Two V_{OUT} Gain Versions Available 20V/V (MAX9929T) 50V/V (MAX9929F)
- Pin Compatible with the MAX4372 in UCSP
- Available in Ultra-Small 3x2 UCSP (1mm x 1.5mm) and 8-Pin μMAX Packages

Applications

Monitoring Charge/Discharge Currents in Portable/Battery-Powered Systems Notebook Computers General-System/Board-Level Current Monitoring Smart-Battery Packs/Chargers Precision Current Sources Smart Cell Phones Super Capacitor Charge/Discharge

Ordering Information

PART	OUTPUT TYPE	GAIN	PIN-PACKAGE	TOP MARK	PKG CODE
MAX9928FAUA+	Current	$G_m = 5\mu A/mV$	8 µMAX	_	U8-1
MAX9928FABT+T [†]	Current	G _m = 5µA/mV	3x2 UCSP	+AAA	R61A1+1
MAX9928TAUA+	Current	$G_m = 2\mu A/mV$	8 µMAX	_	U8-1
MAX9928TABT+T [†]	Current	$G_m = 2\mu A/mV$	3x2 UCSP	+AAC	R61A1+1
MAX9929FAUA+	Voltage	$A_V = 50V/V$	8 µMAX	_	U8-1
MAX9929FABT+T†	Voltage	$A_V = 50V/V$	3x2 UCSP	+AAB	R61A1+1
MAX9929TAUA+*	Voltage	$A_V = 20V/V$	8 µMAX	_	U8-1
MAX9929TABT+*†	Voltage	$A_V = 20V/V$	3x2 UCSP	+AAD	R61A1+1

Note: All devices are specified over the -40°C to +125°C operating temperature range.

+Denotes a lead-free/RoHS-compliant package.

*Future product—contact factory for availability.

†The MAX9928_ABT and the MAX9929_ABT use Package Code R61A1+1 with backside coating to minimize die chipping.

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4644 .com or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

V _{CC} , SIGN to GND	0.3V to +6V
RS+, RS- to GND	0.3V to +30V
OUT to GND	0.3V to $(V_{CC} + 0.3V)$
Differential Input Voltage (V _{RS+} - V _{RS-})	±30V
OUT, SIGN Short Circuit to V _{CC} or GND	Continuous
Current into Any Pin	±20mA
Continuous Power Dissipation ($T_A = +70$	о°С)
6-Bump 1mm x 1.5mm UCSP	
$(derate 3.9m)//^{\circ}C above \pm 70^{\circ}C)$	308 3mW

Operating Temperature Range	40°C to +125°C
Storage Temperature Range	65°C to +150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C
Lead Temperature (reflow)	+260°C
Bump Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(V_{RS+} = -0.1V to +28V, V_{CC} = 3.3V, V_{SENSE} = (V_{RS+} - V_{RS-}) = 0V, R_{OUT} = 10kΩ for MAX9928_, T_A = -40°C to +125°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
AMPLIFIER DC ELECTRICAL CHARACTERISTICS							
		$V_{RS+} = 3.6V$	$T_A = +25^{\circ}C$		±0.1	±0.4	mV
logent Officiat) (altagra (Nata 2)			$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			±0.8	
Input Offset Voltage (Note 2)	Vos		$T_A = +25^{\circ}C$		±0.6	±1.0	
		$V_{RS+} = -0.1V$	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			±3.0	
Common-Mode Input Range	VCMR	(Note 3)		-0.1		+28	V
		21/2	$T_A = +25^{\circ}C$	93	104		dB
Common Mada Daiastian Datia		$2V \le V_{RS+} \le 28V$	$T_A = -40^{\circ}C$ to $+125^{\circ}C$	87			
Common-Mode Rejection Ratio	$\begin{array}{c} \text{CMRR} \\ \text{-0.1V} \leq \text{V}_{\text{RS+}} \leq \\ \text{+2V} \end{array}$	$-0.1V \le V_{RS+} \le$	$T_A = +25^{\circ}C$	60	72		
			$T_A = -40^{\circ}C$ to $+125^{\circ}C$	54			
		MAX992_F			±50		
Full-Scale Sense Voltage (Note 2)	VSENSE	MAX992_T			±125		mV
	•	MAX9929F			50		1///
Gain (Note 2)	Av	MAX9929T			20		V/V
		MAX9929_,	$T_A = +25^{\circ}C$		±0.3	±1.0	
Gain Accuracy (Notes 2, 6)		$V_{RS+} = 3.6V$	$T_A = -40^{\circ}C$ to $+125^{\circ}C$			±2.5	%
		MAX9929_, V _{RS+} = -0.1V	$T_A = +25^{\circ}C$		±0.3	±1.0	%
			$T_A = -40^{\circ}C$ to $+125^{\circ}C$			±2.8	
Transpooldustance (Note 2)	<u></u>	MAX9928F			5		11 A /m) /
Transconductance (Note 2)	GM	MAX9928T			2		µA/mV

www.deELECTRICAL CHARACTERISTICS (continued)

 $(V_{RS+} = -0.1V \text{ to } +28V, V_{CC} = 3.3V, V_{SENSE} = (V_{RS+} - V_{RS-}) = 0V, R_{OUT} = 10k\Omega$ for MAX9928_, T_A = -40°C to +125°C, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
		MAX9928_,	$T_A = +25^{\circ}C$		±0.3	±1.0	
Transconductance Accuracy		$V_{RS+} = 3.6V$	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			±2.5	%
(Note 2)		MAX9928_,	$T_A = +25^{\circ}C$		±0.3	±1.0	%
		$V_{RS+} = -0.1V$	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			±2.8	
Input Ding Ourrent (Nate 4)		$2V \le V_{RS+} \le 28V$	$2V \le V_{RS+} \le 28V$		1.6	6	
Input Bias Current (Note 4)	I _{RS+} , I _{RS-}	$-0.1V \le V_{RS+} \le -$	+2V	-80		+6	μA
	1	$2V \le V_{RS+} \le 28V$	/		±0.05	±1	
Input Offset Bias Current (Note 4)	los	$-0.1V \le V_{RS+} \le -0.1V \le $	+2V		±0.2	±2	μA
Input Leakage Current	I _{RS+} , I _{RS-}	$V_{CC} = 0V, V_{RS+}$	= V _{RS-} = 28V (Note 5)		0.05	1.0	μA
		MAX9928_			5		MΩ
Output Resistance	Rout	MAX9929_		6.4	10	13.6	kΩ
		MAX9928_, R _{OUT} = 10kΩ			(V _{CC} - 0.1)	(V _{CC} - 0.45)	
Output High Voltage (Note 6)	Vон	MAX9929_			(V _{CC} - 0.1)	(V _{CC} - 0.45)	V
			$T_A = +25^{\circ}C$		0.25	2.0	
Minimum Output Voltage (Note 7)	Vol	MAX9929_	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			15	mV
		NAX/0000	$T_A = +25^{\circ}C$		0.025	0.2	
Minimum Output Current (Note 7)	IOL	MAX9928_ $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$				1.5	μA
SIGN COMPARATOR DC ELECT	RICAL CHA	RACTERISTICS	·				
			$T_A = +25^{\circ}C$	-1.6	-1.2	-0.5	
Discharge to Charge Trip Point (Note 8)		$V_{RS+} = 3.6V$	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	-2.15		-0.15	
	VTDC	V _{RS+} = -0.1V	$T_A = +25^{\circ}C$	-2.5	-2.5 -1.2 +	+0.25	mV
			$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	-4.6		+2.3	
Charge to Discharge Trip Point	VTOD	$V_{RS+} = 3.6V$	$T_A = +25^{\circ}C$		-1.8		mV
(Note 8)	VTCD	$V_{RS+} = -0.1V$ $T_A = +25^{\circ}C$			-1.8		IIIV
Hysteresis Width	V _{HYS}	V _{RS+} = 3.6V, -0.1V	$T_A = +25^{\circ}C$		0.6		mV

ELECTRICAL CHARACTERISTICS (continued)

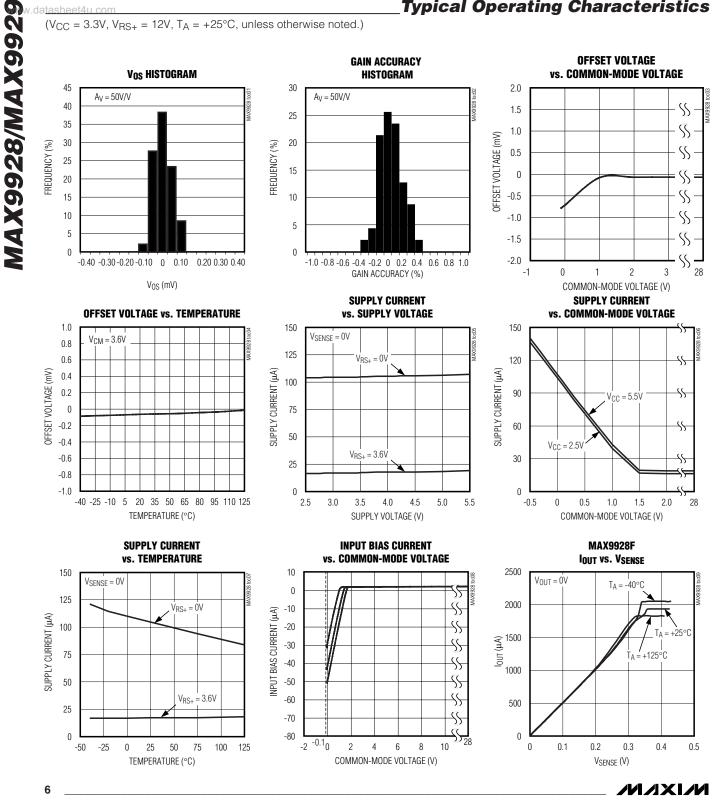
 $(V_{RS+} = -0.1V \text{ to } +28V, V_{CC} = 3.3V, V_{SENSE} = (V_{RS+} - V_{RS-}) = 0V, R_{OUT} = 10k\Omega \text{ for MAX9928}_, T_A = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ unless otherwise noted.}$ wise noted. Typical values are at T_A = +25^{\circ}C.) (Note 1)

PARAMETER	SYMBOL	C	ONDITIONS	MIN	ТҮР	MAX	UNITS
Common-Mode Input Range (Note 9)	VCMR			-0.1		+28	V
Common-Mode Rejection Ratio	CMRR	$2V \le V_{RS+} \le 28V$			102		dB
(Note 9)	CIVINN	$-0.1V \le V_{RS+} \le +2$	2V		74		uБ
Output Low Voltage	Vol	$I_{SINK} = 100 \mu A$			0.03	0.1	V
Output High Voltage	VOH				(V _{CC} - 0.01)	(V _{CC} - 0.04)	V
Internal Pullup Resistor	RPULL-UP				1		MΩ
POWER SUPPLY							
Currely Veltage Denge (Neta 10)		$T_A = +25^{\circ}C$		2.5		5.5	V
Supply Voltage Range (Note 10)	Vcc	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		2.8		5.5	V
Amplifier Power-Supply Rejection	PSRRA	V _{RS+} = 3.6V		72	90		dB
Ratio (Note 10)	ronna	$V_{RS+} = -0.1V$		66	86		uВ
Comparator Power-Supply	PSRR _C	V _{RS+} = 3.6V			90		dB
Rejection Ratio		$V_{RS+} = -0.1V$			86		u.D
Quiescent Supply Current	ICC	$2V \le V_{RS+} \le 28V$			20	30	μA
		$-0.1V \le V_{RS+} < +2V$			115	200	μπ
AC ELECTRICAL CHARACTERIS	TICS			1			
-3dB Bandwidth	BW	MAX992_F, V _{SENSE} = 50mV		150		kHz	
	511	MAX992_T, V _{SEN}	_{SE} = 125mV		125		NI 12
		V _{RS+} = 3.6V, C _{LOAD} = 10pF,	MAX992_F, V _{SENSE} = 5mV to 50mV step		6		
OUT Settling to 1% of Final Value			MAX992_F, V _{SENSE} = 50mV to 5mV step	15			1
		$R_{OUT} = 10k\Omega$ for	MAX992_T, V _{SENSE} = 5mV to 125mV step		8		μs
			MAX992_T, V _{SENSE} = 125mV to 5mV step		13		

" " ELECTRICAL CHARACTERISTICS (continued)

 $(V_{RS+} = -0.1V \text{ to } +28V, V_{CC} = 3.3V, V_{SENSE} = (V_{RS+} - V_{RS-}) = 0V, R_{OUT} = 10k\Omega$, for MAX9928_, $T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

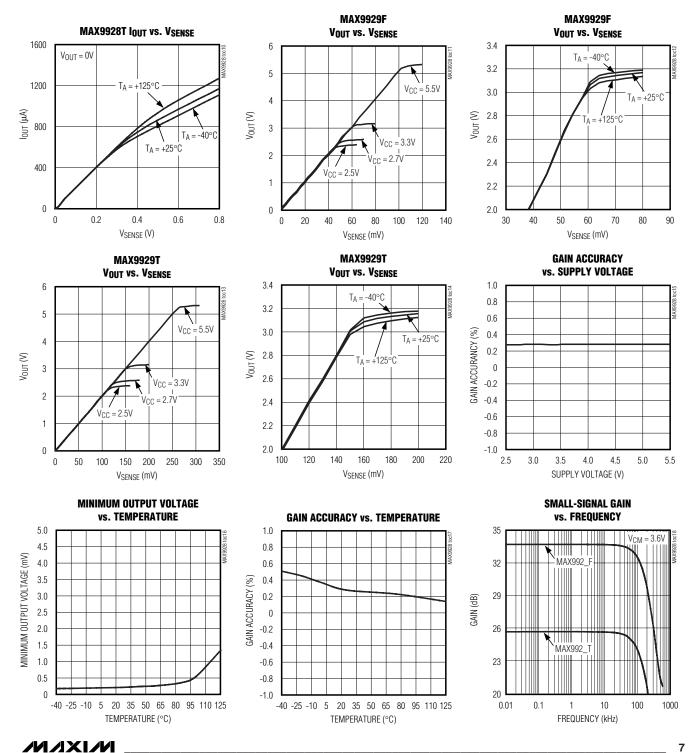
PARAMETER	SYMBOL	SYMBOL CONDITIONS		ТҮР	МАХ	UNITS
SIGN Comparator Propagation		Overdrive = 1mV		80		
Delay (Low to High)	tprop_lh	Overdrive = 5mV		30		μs
SIGN Comparator Propagation	tan on	Overdrive = 1mV		50		
Delay (High to Low)		Overdrive = 5mV		13		μs
Power-Up Time to 1% of Final Value		$V_{SENSE} = 50mV$ for MAX992_F, $V_{SENSE} = 125mV$ for MAX992_T, $V_{RS+} = 3.6V$, $C_{LOAD} = 10pF$		50		μs
Saturation Recovery Time		$\begin{array}{l} 100mV \leq V_{SENSE} \leq 50mV \mbox{ for MAX992_F}, \\ 250mV \leq V_{SENSE} \leq 125mV \mbox{ for MAX992_T}, \\ V_{RS+} = 3.6V, C_{LOAD} = 10pF \end{array}$		4		ms


Note 1: All devices are 100% production tested at $T_A = +25^{\circ}C$. All temperature limits are guaranteed by design.

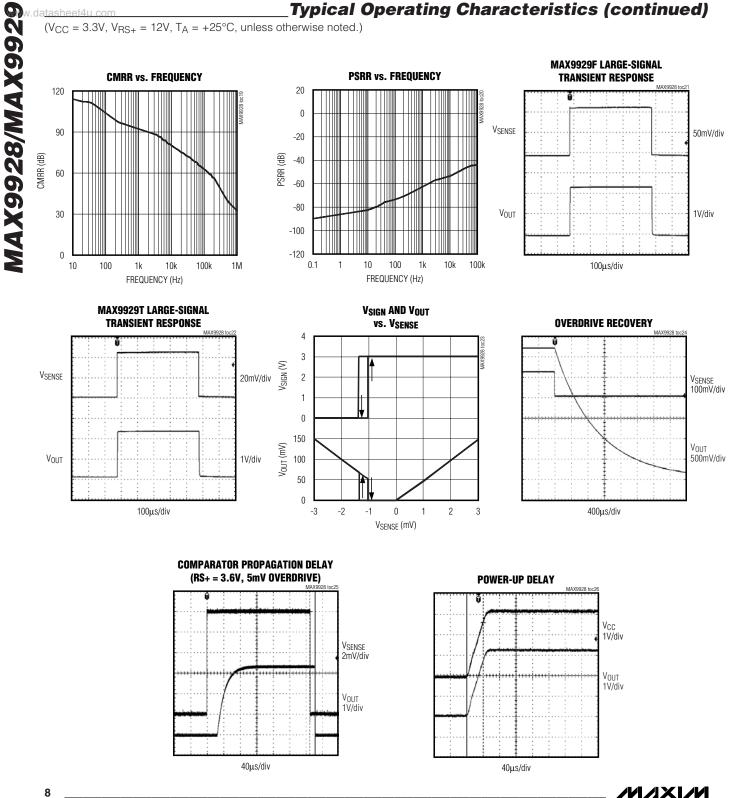
- **Note 2:** V_{OS} is extrapolated from two point transconductance and gain accuracy tests. Measurements are made at V_{SENSE} = +5mV and V_{SENSE} = +5mV and V_{SENSE} = +5mV for MAX992_T. These measurements are also used to test the full-scale sense voltage, transconductance, and gain. These V_{OS} specifications are for the trimmed direction only (V_{RS+} > V_{RS-}). For current flowing in the opposite direction (V_{RS-} > V_{RS+}), V_{OS} is ±1mV (max) at +25°C and ±1.8mV (max) over temperature, when V_{RS+} is at 3.6V. See the *Detailed Description* for more information.
- **Note 3:** Guaranteed by common-mode rejection ratio. Extrapolated V_{OS} as described in Note 2 is used to calculate common-mode rejection ratio.
- **Note 4:** Includes input bias current of SIGN comparator.
- **Note 5:** Leakage in to RS+ or RS- when $V_{CC} = 0V$. Includes input leakage current of SIGN comparator. This specification does not add to the bias current.
- **Note 6:** Output voltage should be 650mV below V_{CC} to achieve full accuracy.
- Note 7: I_{OL} is the minimum output current in the V_{SENSE} I_{OUT} transfer characteristics. V_{OL} is the minimum output voltage in the V_{SENSE} V_{OUT} transfer characteristic.
- **Note 8:** V_{SENSE} voltage required to switch comparator.
- Note 9: Discharge to charge trip point is functionally tested at $V_{CM} = -0.1V$, +3.6V, and +28V.
- **Note 10:** Guaranteed by PSRR test. Extrapolated V_{OS} as described in Note 2 is used to calculate the power-supply rejection ratio. V_{SENSE} has to be such that the output voltage is 650mV below V_{CC} to achieve full accuracy.

5

($V_{CC} = 3.3V$, $V_{RS+} = 12V$, $T_A = +25^{\circ}C$, unless otherwise noted.)


Typical Operating Characteristics

Typical Operating Characteristics (continued)


 $(V_{CC} = 3.3V, V_{RS+} = 12V, T_A = +25^{\circ}C, unless otherwise noted.)$

www.datasheet4u.com

MAX9928/MAX9929

www.DataSheet4U.com

www.DataSheet4U.com

Pin Description

PIN	BUMP	NAME	EUNCTION					
μΜΑΧ	UCSP	NAME	FUNCTION					
1	B3	RS-	Negative Current-Sense Input. Load-side connection for the external sense resistor.					
2	B2	SIGN	$ SIGN \ Output. \ Indicates \ polarity \ of \ V_{SENSE}. \\ SIGN = H \ indicates \ V_{RS+} > V_{RS-} \\ SIGN = L \ indicates \ V_{RS+} < V_{RS-} $					
3	B1	RS+	Positive Current-Sense Input. Power-side connection to the external sense resistor.					
4, 5	—	N.C.	No Connection. Not internally connected.					
6	A1	V _{CC}	Supply Voltage Input. Bypass to GND with a 0.1µF capacitor.					
7	A2	GND	Circuit Ground					
8	A3	OUT	Current-Sense Output. MAX9928: Current output (I_{OUT} is proportional to IV_{SENSE}). MAX9929: Voltage output (V_{OUT} is proportional to IV_{SENSE}).					

Detailed Description

The MAX9928_/MAX9929_ micropower uni-/bidirectional, current-sense amplifiers feature -0.1V to +28V input common-mode range that is independent of the supply voltage. This wide input voltage range feature allows the monitoring of the current flow out of a power supply during short-circuit/fault conditions, and also enables high-side current sensing at voltages far in excess of the supply voltage (V_{CC}). The MAX9928_/MAX9929_ operate from a 2.5V to 5.5V single supply and draw a low 20 μ A quiescent supply current.

Current flows through the sense resistor, generating a sense voltage V_{SENSE} (Figure 1). The comparator senses the direction of the sense voltage and configures the amplifier for either positive or negative sense voltages by controlling the S1 and S2 switches.

For positive V_{SENSE} voltage, the amplifier's inverting input is high impedance and equals V_{IN} - V_{SENSE}. The amplifier's output drives the base of Q1, forcing its non-inverting input terminal to (V_{IN} - V_{SENSE}); this causes a current to flow through R_{G1} equal to IV_{SENSE}I/R_{G1}. Transistor Q2 and the current mirror amplify the current by a factor of M.

For negative VSENSE voltage, the amplifier's noninverting input is high impedance and the voltage on RS- terminal equals $V_{IN} + V_{SENSE}$. The amplifier's output drives the base of Q1 forcing its inverting input terminal to match the voltage at the noninverting input terminal; this causes a current to flow through RG2 equal to V_{SENSE}/R_{G2} . Again, transistor Q2 and the current mirror amplify the current by a factor of M.

+VSENSE vs. -VSENSE

The amplifier is configured for either positive VSENSE or negative VSENSE by the SIGN comparator. The comparator has a built-in offset skew of -1.2mV so that random offsets in the comparator do not affect the precision of IOUT (VOUT) with positive VSENSE. The comparator has a small amount of hysteresis (typically 0.6mV) to prevent its output from oscillating at the crossover sense voltage. The ideal transfer characteristic of IOUT (VOUT) and the output of the comparator (SIGN) is shown in Figure 2.

The amplifier VOS is only trimmed for the positive VSENSE voltages (V_{RS+} > V_{RS-}). The SIGN comparator reconfigures the internal structure of the amplifier to work with negative VSENSE voltages (V_{RS-} > V_{RS+}) and the precision VOS trim is no longer effective and the resulting VOS is slightly impacted. See details in the *Electrical Characteristics* Note 2. The user can choose the direction that needs the best precision to be the direction where V_{RS+} > V_{RS-}. For example, when monitoring Li+ battery currents, the discharge current should be V_{RS+} > V_{RS-} to give the best accuracy over the largest dynamic range. When the battery charger is plugged in, the charge current flows in the opposite direction and is usually much larger, and a higher VOS error can be tolerated. See the *Typical Operating Circuit*.

For applications with unidirectional currents (e.g., battery discharge only), the SIGN output can be ignored.

Note that as V_{SENSE} increases, the output current (I_{OUT} for the MAX9928 or V_{OUT}/10k Ω for the MAX9929) also increases. This additional current is supplied from V_{CC}.

MAX9928/MAX9929

M/XI/M

www.datasheet4u.cou

9

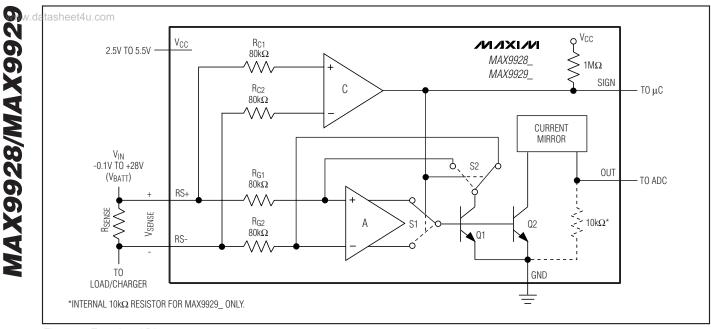


Figure 1. Functional Diagram

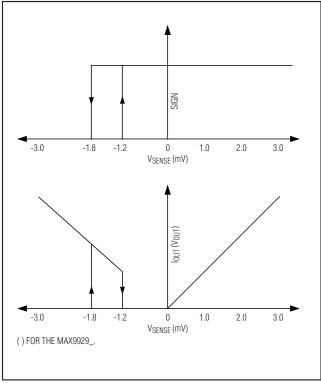


Figure 2. Ideal Transfer Characteristics with 0mV Amplifier Input Offset Voltage and -1mV Comparator Input Offset Voltage

For both positive and negative V_{SENSE} voltages, the current flowing out of the current mirror is equal to:

IOUT = M x IVSENSEI/RG1

For the MAX9928F/MAX9928T, the transconductance of the device is trimmed so that I_{OUT}/IV_{SENSE}I = 5 μ A/mV and 2 μ A/mV, respectively. For the MAX9929F/MAX9929T, the voltage gain of the device is trimmed so that V_{OUT}/IV_{SENSE}I = 50V/V and 20V/V, respectively. The SIGN output from the comparator indicates the polarity of V_{SENSE}.

Current Output (MAX9928_)

The output voltage equation for the MAX9928_ is given below:

where V_{OUT} = the desired full-scale output voltage, I_{LOAD} = the full-scale current being sensed, R_{SENSE} = the current-sense resistor, R_{OUT} = the voltage-setting resistor, and G_m = MAX9928F transconductance (5 μ A/mV) or MAX9928T transconductance (2 μ A/mV).

The full-scale output voltage range can be set by changing the R_{OUT} resistor value. The above equation can be modified to determine the R_{OUT} required for a particular full-scale range:

ROUT = (VOUT)/(ILOAD x RSENSE x Gm)

OUT is a high-impedance current source and can drive an unlimited amount of capacitance.

Voltage Output (MAX9929_)

The output voltage equation for the MAX9929_ is given below:

$V_{OUT} = (R_{SENSE} \times I_{LOAD}) \times (A_V)$

where V_{OUT} = the desired full-scale output voltage, I_{LOAD} = the full-scale current being sensed, R_{SENSE} = the current-sense resistor, A_V = MAX9929F voltage gain (50V/V) or MAX9929T voltage gain = (20V/V).

SIGN Output

The current/voltage at OUT indicates magnitude. The SIGN output indicates the current's direction. The SIGN comparator compares RS+ to RS-. The sign output is high when RS+ is greater than RS- indicating positive current flow. The sign output is low when RS- is greater than RS+ indicating negative current flow. In battery-operated systems, this is useful for determining whether the battery is charging or discharging. The SIGN output might not correctly indicate the direction of load current when V_{SENSE} is between -1.8mV to -1.2mV (see Figure 2). Comparator hysteresis of 0.6mV prevents oscillation of SIGN output. If current direction is not needed, leave SIGN unconnected.

Applications Information

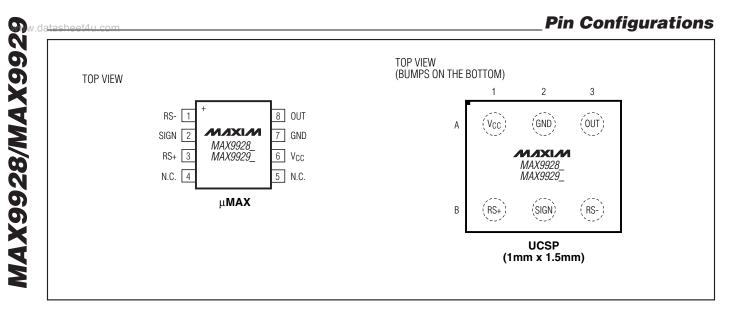
Choosing RSENSE

The MAX9928_/MAX9929_ operate over a wide variety of current ranges with different sense resistors. Adjust the RSENSE value to monitor higher or lower current levels. Select RSENSE using these guidelines:

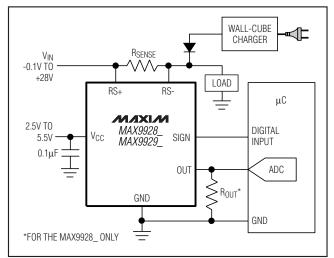
- Voltage Loss: A high R_{SENSE} value causes the power-source voltage to drop due to IR loss. For least voltage loss, use the lowest R_{SENSE} value.
- Accuracy: A high RSENSE value allows lower currents to be measured more accurately. This is because offsets become less significant when the sense voltage is larger.
- Efficiency and Power Dissipation: At high current levels, the I²R losses in R_{SENSE} might be significant. Take this into consideration when choosing the resistor value and power dissipation (wattage) rating. Also, if the sense resistor is allowed to heat up excessively, its value could drift.

• **Inductance:** If there is a large high-frequency component to ISENSE, keep inductance low. Wire-wound resistors have the highest inductance, while metal film is somewhat better. Low-inductance metal-film resistors are available. Instead of being spiral wrapped around a core, as in metal film or wire-wound resistors, these are a straight band of metal. They are made in values under 1 Ω .

Use in Systems with Super Capacitors


Since the input common-mode voltage range of the MAX9928/MAX9929 extends all the way from -0.1V to 28V, they are ideal to use in applications that require use of super capacitors for temporary or emergency energy storage systems. Some modern industrial and automotive systems use multifarad (1F–50F) capacitor banks to supply enough energy to keep critical systems alive even if the primary power source is removed or temporarily disabled. Unlike batteries, these capacitors can discharge all the way down to 0V. The MAX9928/MAX9929 can continuously help monitor their health and state of charge/discharge.

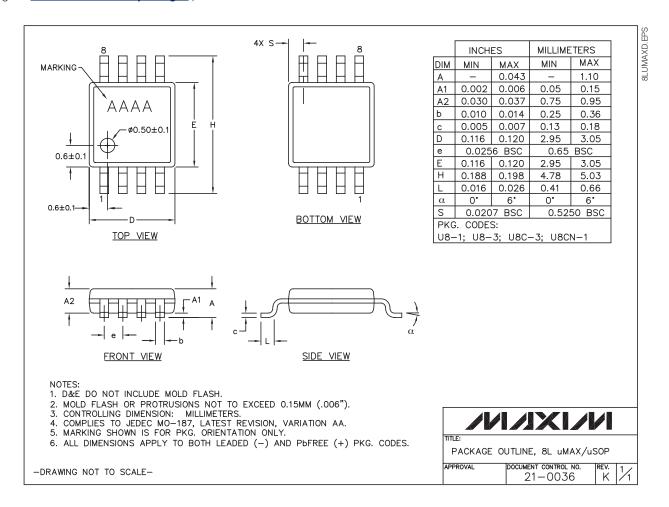
UCSP Applications Information


For the latest application details on UCSP construction, dimensions, tape carrier information, PCB techniques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, go to Maxim's website at www.maximic.com/ucsp to find Application Note 1891: Understanding the Basics of the Wafer-Level Chip-Scale Package (WL-CSP).

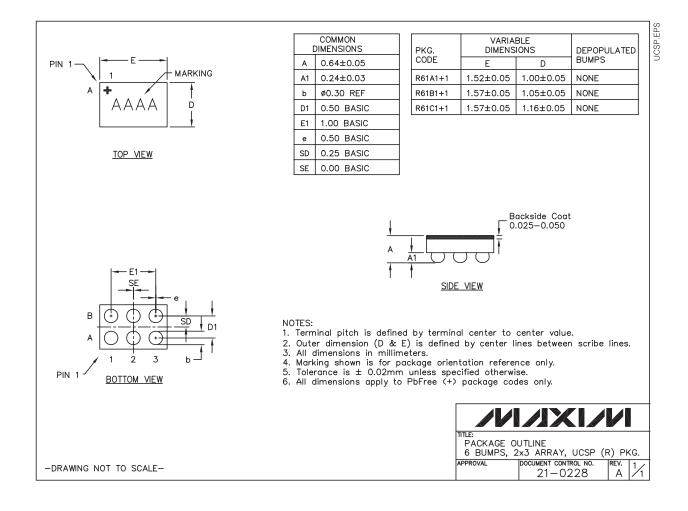
Chip Information

PROCESS: BICMOS

_Typical Operating Circuit



www.datasheet4u.cor


Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>www.maxim-ic.com/packages</u>.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

14

MAX9928/MAX9929

is a registered trademark of Maxim Integrated Products, Inc.

www.DataSheet4U.com